Privileged Knowledge Distillation and **Hierarchical Framework** in Reinforcement Learning

CS586 – Robot Motion Planning and Applications Speaker: Taegeun Yang 2025.04.09

Content

Recap: Reinforcement Learning

Privileged Knowledge Distillation

- Concept
- Teacher-Student Framework
- Regularized Online Adaptation (ROA)

Hierarchical Reinforcement Learning (HRL)

- Concept
- Related Works *Manipulation, Locomotion, Navigation*

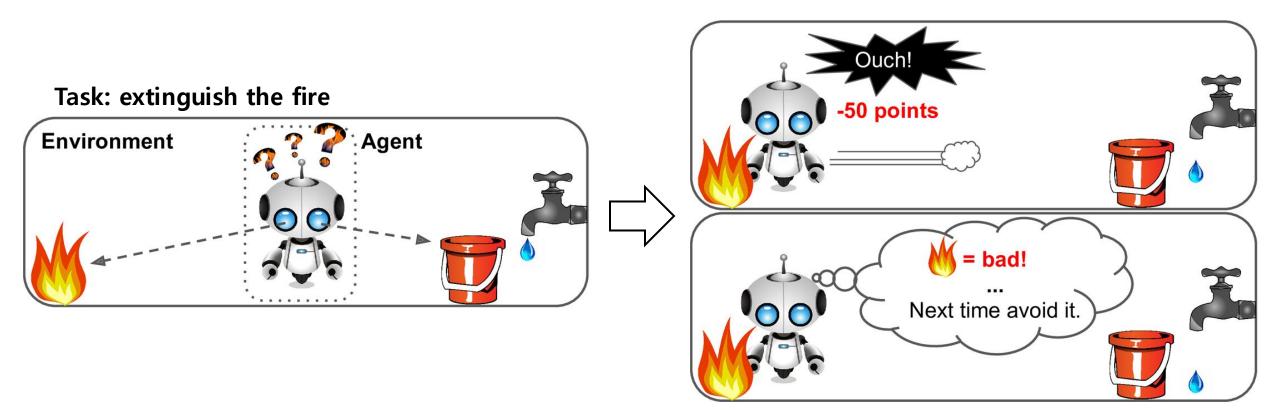
Our Work

 Efficient Navigation Among Movable Obstacles using a Mobile Manipulator via Hierarchical Policy Learning

2

Agent learns to make decisions by interacting with an environments

• <u>Trial and error</u> interactions with an environment

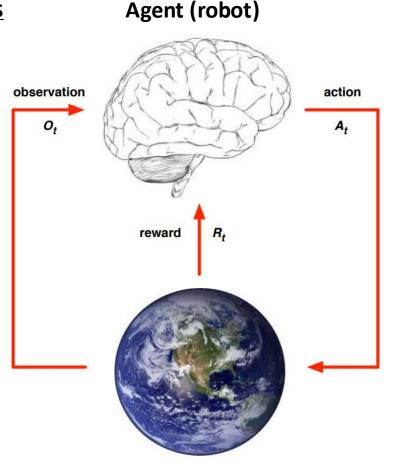


Agent learns to make decisions by interacting with an environments

• Trial and error interactions with an environment

At each time step t

- Agent:
 - Receives observation O_t (e.g., sensing)
 - Executes action A_t (e.g., move forward)
 - Receives reward R_t (task related)
- Environment:
 - Receives action A_t
 - Emits observation O_{t+1}
 - Emits reward R_{t+1}



Environment (physics simulation, real world)

Problem Formulation

- Markov Decision Problem (MDP)
 - $\langle S, A, R, T, \gamma \rangle$
 - *S*: state space
 - A: action space
 - *R*:reward function $R: S \times A \times S \rightarrow \mathbb{R}$
 - *T*: state transition function $T: S \times A \rightarrow S$
 - γ : discount factor $\gamma \in [0,1)$

Objective

- Maximize expected cumulative reward *(return)* : $\sum_{t=0}^{\infty} \gamma^t r_t$
 - Policy $\pi_{\theta}: S \to A$

•
$$\theta^* = \underset{\theta}{\operatorname{argmax}} \mathbb{E}_{a \sim \pi_{\theta}(s), s' \sim T(s, a)} \left[\sum_{t=0}^{\infty} \gamma^t R(s, a, s') \right]$$

Example 1: Atari Example

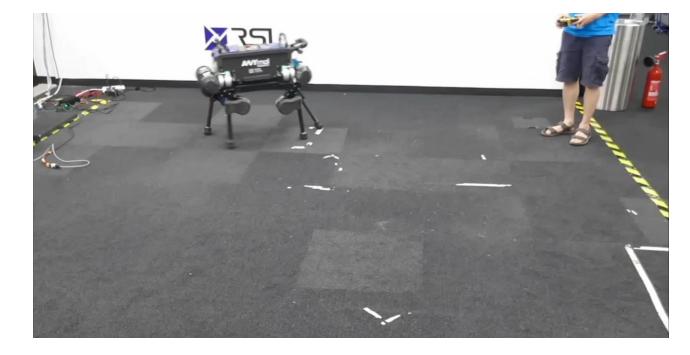
- *S*: state space image
- *A*: action space move left/right
- *R*: reward function
 - Breaking a block: +1
 - Missing a ball: -1
- *T*: state transition function
 - How the ball moves
 - Block breaks when hit by ball
- γ : discount factor $\gamma \in [0,1)$

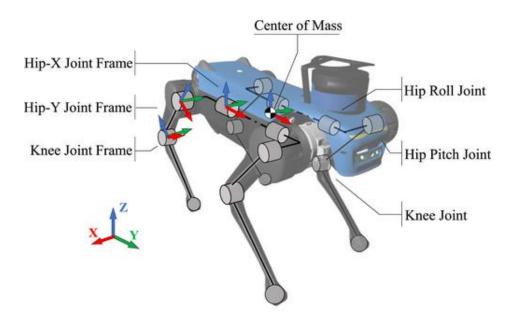


• Policy determines where the paddle (agent) moves based on the image input

Example 2: Quadruped Robot Locomotion

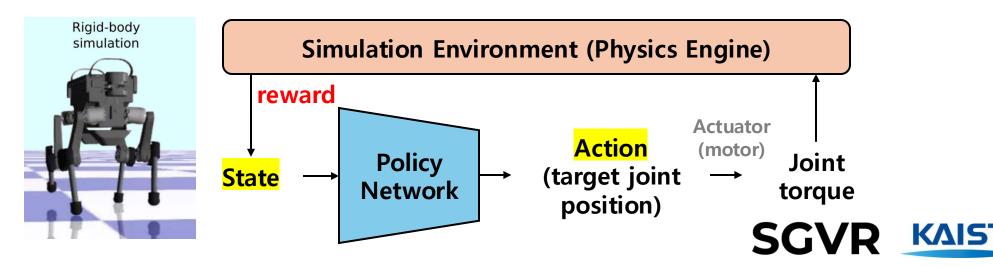
- Given movement command: forward velocity, lateral velocity, and angular velocity (yaw)
- Policy output: <u>Action target joint position</u> (12-dim)





Example 2: Quadruped Robot Locomotion

- Given movement command: forward velocity, lateral velocity, and angular velocity (yaw)
- Policy *input* : <u>State current robot state, target movement command, etc.</u>
- Policy *output* : <u>Action target joint position</u> (12-dim)
- Reward command tracking, stable locomotion (i.e., avoid falling), etc.
- **Transition** Physics Engine (dynamics)



Privileged Knowledge

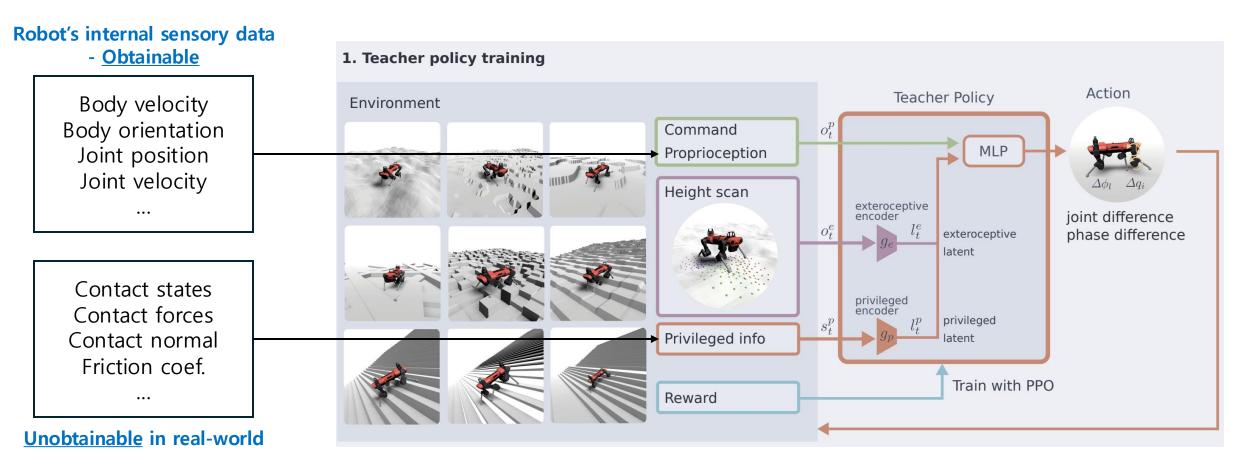
- Information that is available during training but not during deployment (testing)
- In the context of RL
 - Extra observations or state variables
 - E.g., ground friction, forces (not be accessible in the real-world)
- Provide more complete understanding of the environment

Knowledge Distillation

- Training technique <u>weaker policy</u> learns by mimicking the behavior of <u>stronger policy</u>
 student teacher
- Strong policy: trained with <u>full</u> state information (w/ privileged information)
- Weak policy: trained with <u>partial</u> state information (w/o privileged information)

Example 1: Teacher-Student Framework

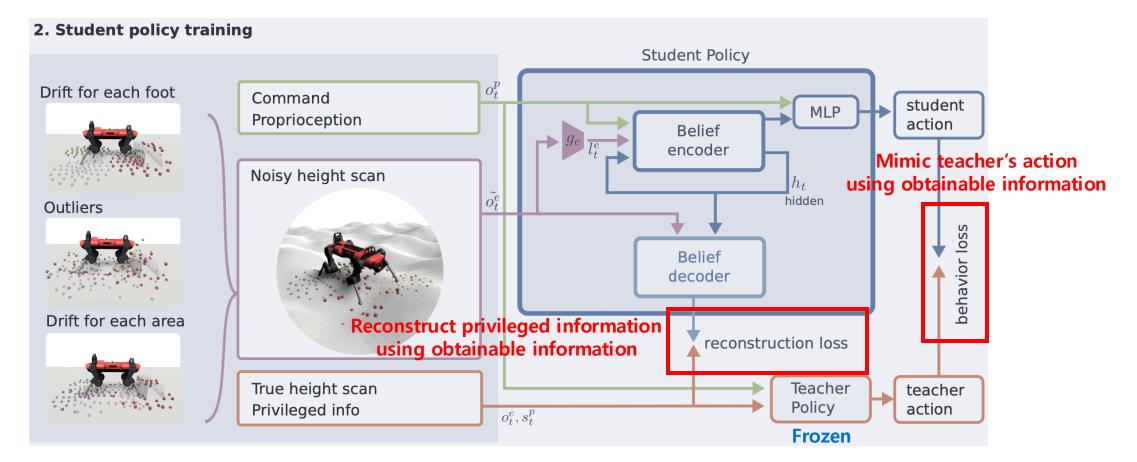
• Train teacher policy with privileged information (RL)



Learning robust perceptive locomotion for quadrupedal robots in the wild (Science Robotics, 2022)

Example 1: Teacher-Student Framework

• Train student policy without privileged information (Supervised Learning)



Learning robust perceptive locomotion for quadrupedal robots in the wild (Science Robotics, 2022) 🛀

καις

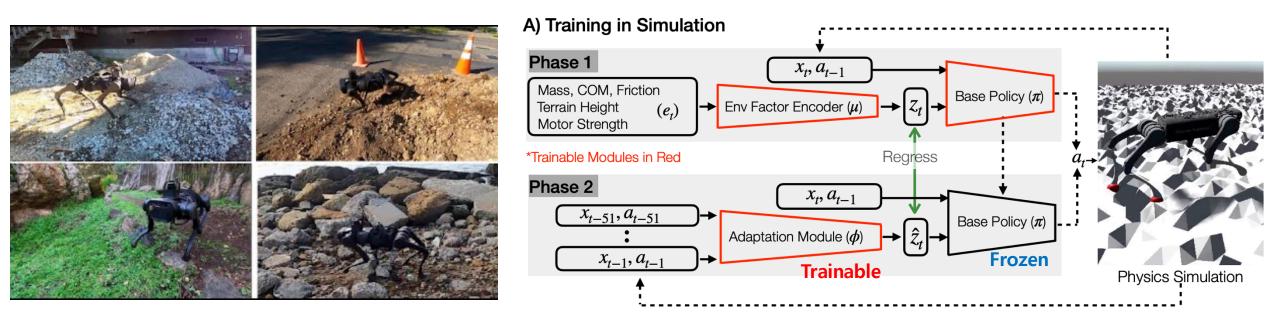
Example 1: Teacher-Student Framework

• Deploy using **student** policy *(real-world)*

Learning robust perceptive locomotion for quadrupedal robots in the wild (Science Robotics, 2022) 🛏

Example 2: Adaptation Module

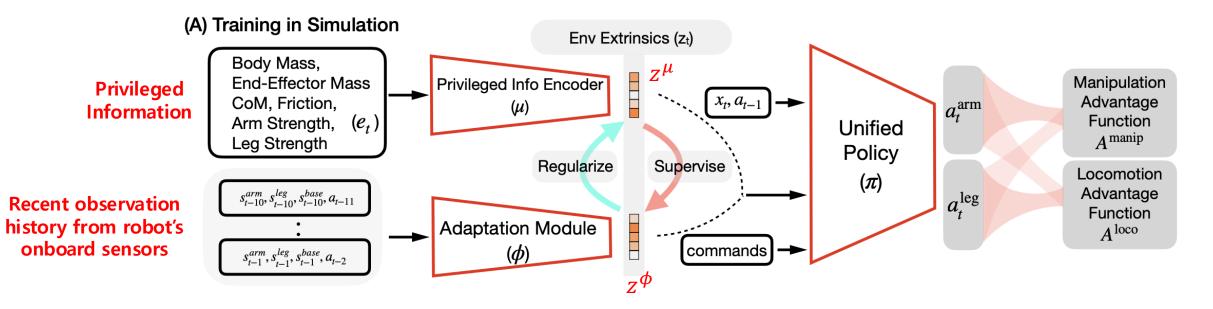
- Estimate encoded privileged information using history of the robot's state
 - Perform robust and adaptive locomotion



Example 3: Regularized Online Adaptation (ROA)

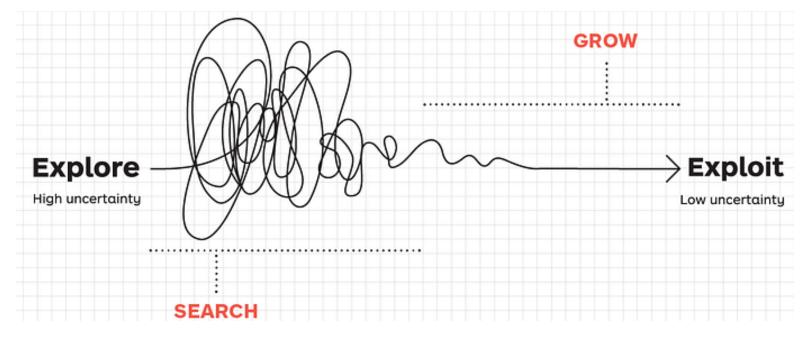
- 2-step training framework \rightarrow teacher policy may not provide supervision that student can learn
- Remove 2-step framework
 - Training Loss: $L(\theta_{\pi}, \theta_{\mu}, \theta_{\phi}) = -J(\theta_{\pi}, \theta_{\mu}) + \lambda ||z^{\mu} sg[z^{\phi}]||_{2} + ||sg[z^{\mu}] z^{\phi}||_{2}$ sg: stop gradient

RL objective Increase from 0 to 1



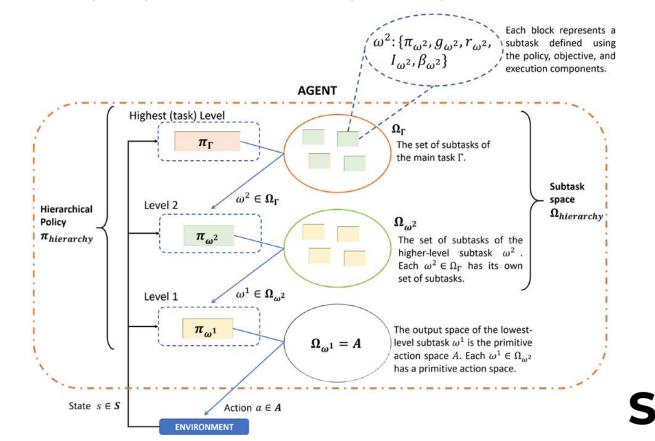
Exploration in Reinforcement Learning (RL)

- Essential for learning optimal policies in uncertain environments
 - w/o exploration: agent may become stuck in local optima
- Become more challenging as the observation *(input)* & action *(output)* space expands



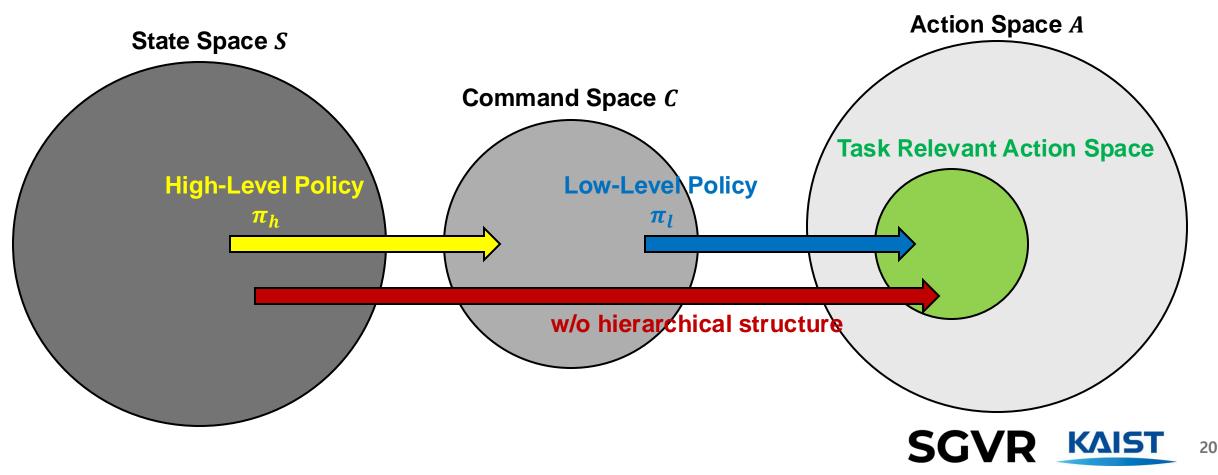
Exploration in Reinforcement Learning (RL)

- Observation & Action space $\uparrow \rightarrow$ difficulty of effective exploration \uparrow
- Hierarchical structure
 - Break down a complex problem into multiple sub-problems



Recent Hierarchical Framework in RL

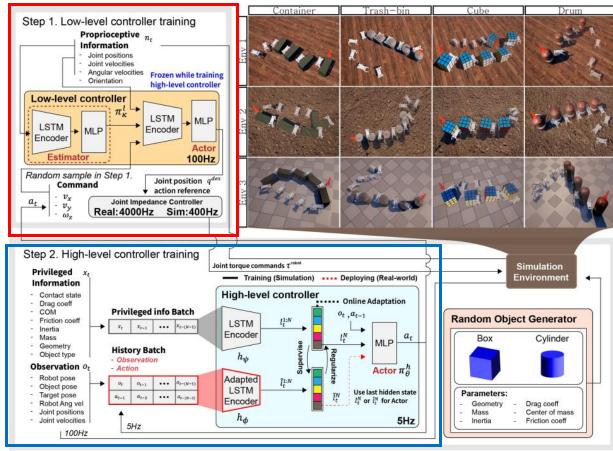
- High-Level Policy : decide task-relevant command (decision making)
- Low-Level Policy : execute given command (control)



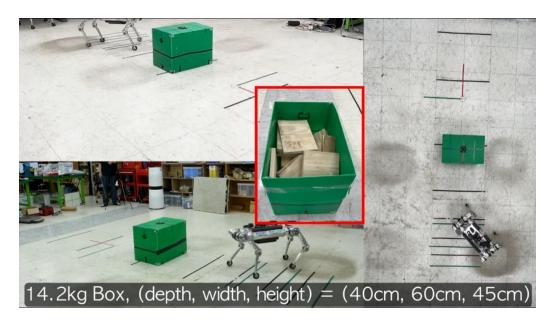
Example 1: Manipulation

• *High-Level Policy* : decide robot's velocity (command) to push the object to the target location

Low-Level • Low-Level Policy : execute given command (velocity command → target joint positions)



* During High-Level training, Low-Level policy keeps frozen



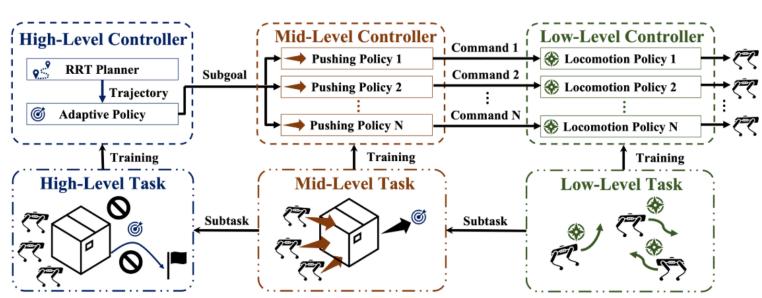
High-Level w/ privileged learning (ROA)

Example 2: Manipulation

3-step training

process

- *High-Level Policy* : generate subgoals for the object
- *Mid-Level Policy* : decide robots' velocity (command) to push the object to the subgoal
- Low-Level Policy : execute given velocity command



Methodology

SGVR KAIST 22

Learning Multi-Agent Loco-Manipulation for Long-Horizon Quadrupedal pushing (arXiv, 2024)

Example 3: Locomotion

• Follow given velocity command given by human in confined space

 $(\boldsymbol{v}_{\boldsymbol{x}}, \boldsymbol{v}_{\boldsymbol{y}}, \boldsymbol{w}_{\boldsymbol{z}})$

• Requires body adjustments to avoid collision

Body adjustment

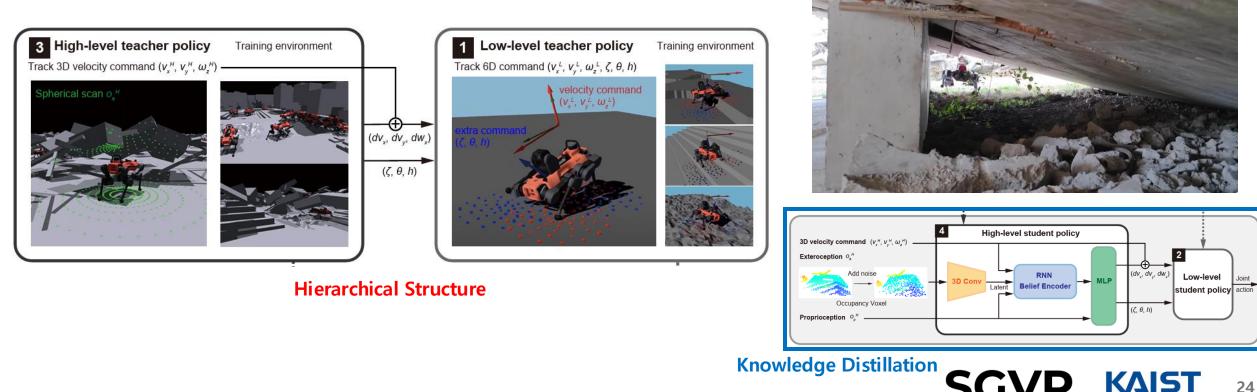
(a)

body height I

Example 3: Locomotion

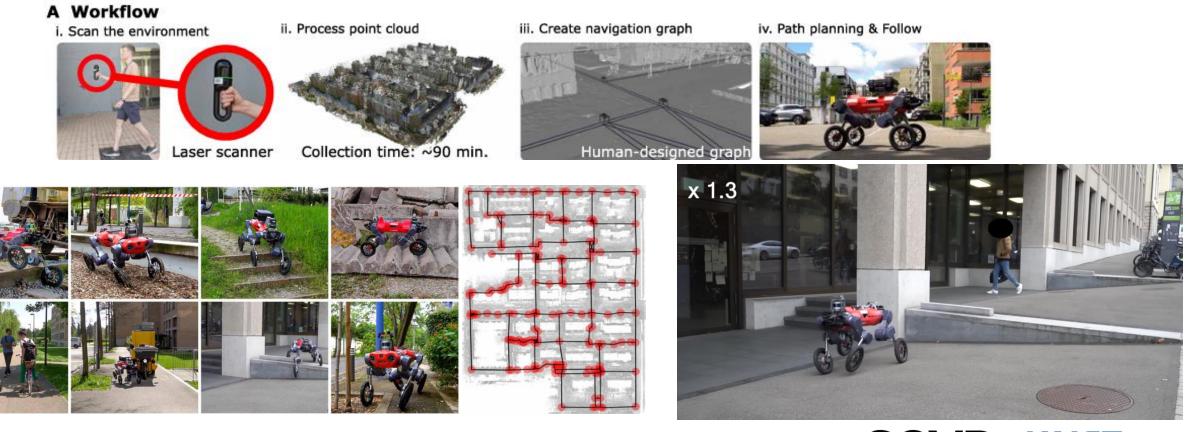
Body velocity & Body adjustment motion

- *High-Level Policy* : generate 6-dim command \rightarrow avoid collision, track 3-dim velocity command
- *Low-Level Policy* : execute given 6-dim command *(command → joint action)*



Example 4: Navigation

- Autonomous navigation (map \rightarrow planning \rightarrow follow)
- Sensor data (e.g., LiDAR, Camera) → Joint action (avoid collision, path following, etc.) : Hard to learn



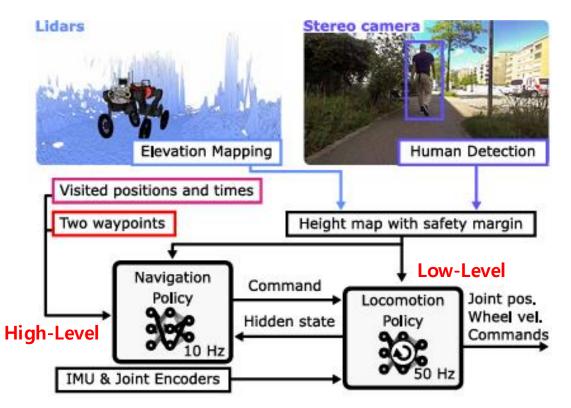
Learning robust autonomous navigation and locomotion for wheeled-legged robots (Science Robotics, 2024)

Example 4: Navigation

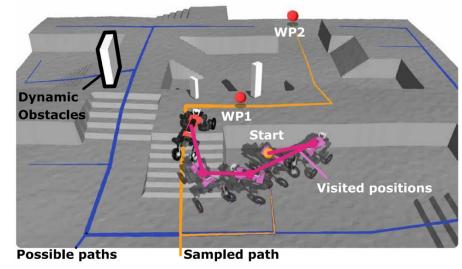
• *High-Level Policy* : consider surrounding environment & path \rightarrow generate velocity command

 (v_x, v_y, w_z)

• Low-Level Policy : execute given command (velocity command → target joint position/velocity)



C Training Environment



Learning robust autonomous navigation and locomotion for wheeled-legged robots (Science Robotics, 2024)

Thanks for your attention

Any question will be welcome

CS586 – Robot Motion Planning and Applications Speaker: Taegeun Yang 2025.04.09

